- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Akintola, Tawakalt Mayowa (2)
-
Dickens, Tarik (2)
-
Kumar, Balaji Krishna (1)
-
Lucien, Charissa (1)
-
Tran, Phong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Karbhari, VM (1)
-
Spearing, M (1)
-
Tsai, SW (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This research introduces a readily available and non-chemical combinatorial production approach, known as the laser-induced writing process, to achieve laser-processed conductive graphene traces. The laser-induced graphene (LIG) structure and properties can be improved by adjusting the laser conditions and printing parameters. This method demonstrates the ability of laser-induced graphene (LIG) to overcome the electrothermal issues encountered in electronic devices. To additively process the PEI structures and the laser-induced surface, a high-precision laser nScrypt printer with different power, speed, and printing parameters was used. Raman spectroscopy and scanning electron microscopy analysis revealed similar results for laser-induced graphene morphology and structural chemistry. Significantly, the 3.2 W laser-induced graphene crystalline size (La; 159 nm) is higher than the higher power (4 W; 29 nm) formation due to the surface temperature and oxidation. Under four-point probe electrical property measurements, at a laser power of 3.8 W, the resistivity of the co-processed structure was three orders of magnitude larger. The LIG structure and property improvement are possible by varying the laser conditions and the printing parameters. The lowest gauge factor (GF) found was 17 at 0.5% strain, and the highest GF found was 141.36 at 5%.more » « less
-
Akintola, Tawakalt Mayowa; Tran, Phong; Lucien, Charissa; Dickens, Tarik (, Journal of Composite Materials)Spearing, M; Tsai, SW; Karbhari, VM (Ed.)Triboluminescence (TL) is a phenomenon of light emission induced by impact, stress, fracture, or an applied mechanical force. This phenomenon can be used to detect, evaluate, and predict mechanical failures in composites. In this report, we utilized manganese-doped zinc-sulphide (ZnS: Mn) and Polystyrene (PS) composite to fabricate a TL functional part via additive manufacturing. The morphology of the particles inside the polymer matrix were studied using scanning electron microscopy and micro CT scan. Thermoanalytical techniques such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were carried out to evaluate the thermal transitions and degradation of the composites. The mechanoluminescence performance of the printed samples is evaluated by three-point flexural test and observed to depend on processing conditions that can be utilized to achieve a strong light signal at different mechanical loads. The polymer composite fabrication and processing reduced particle size, enhanced particle dispersion, and altered the mechanical properties of the polymer to help increase the mechanoluminescence response up to 10 times in the 3D printed parts. The unique mechanoluminescence properties of 3D printed luminescent composite have great potential for structural monitoring applications.more » « less
An official website of the United States government
